手机版
您的当前位置: 正能量句子网 > 句子大全 > 正能量的句子 > 亲合(共10篇)

亲合(共10篇)

来源:正能量的句子 时间:2018-11-08 点击: 推荐访问:亲合人力 亲子亲合

【www.ahstyy.net--正能量的句子】

亲合(一):

电子亲合能是什么?

..元素原子得到电子形成阴离子所释放的能量.
条件是元素原子的基态气态原子.
这和电离能恰恰相反,电离能是原子失去电子要吸收的能量.【亲合】

亲合(二):

大肠杆菌乳糖操纵子分解代谢物激活蛋白(  )

A.使RNA聚合酶与启动子区域结合的亲合性增加
B.降低RNA聚合酶活性
C.结合cAMP后就没有动能了
D.A和B都对

分解代谢物基因激活蛋白CAP是同二聚体,在其分子内有DNA结合区及cAMP结合位点.当没有葡萄糖及cAMP浓度较高时,cAMP与CAP结合,这时CAP结合在乳糖启动序列附近的CAP位点,可刺激RNA转录活性,使之提高50倍.
A、使RNA聚合酶与启动子区域结合的亲合性增加,A正确;
B、会增加RNA聚合酶活性,B错误;
C、结合cAMP后就没有动能了,C错误;
D、A 和B都对,D错误.
故选:A.【亲合】

亲合(三):

①化学原子结构和分子结构理论的意义是什么,有什么作用?②
①化学原子结构和分子结构理论的意义是什么,有什么作用?
②分子价键理论和杂化轨道理论与电负性亲合能的关系是什么?有什么作用?
③怎样从判断两种陌生反应物是否反应?若反应怎么判断产物是什么?需要什么理论基础④化学反应动力学对化学反应的作用是什么?⑤酸碱性到底是什么?请从本质上给予解答
在这里先谢谢了,不管会多少都可以回答(请标序号)

1、意义是让我们更好的了解它,作用是解释它的已知性质并合理猜想它的未知性质.
2、电负性亲和能可以判断价键的成键类型和极性,与杂化理论关系不大.电负性亲和能对极化作用有很好的解释作用,用以判断配合物的颜色.
3、其实在这个世界里,没有不反应的两种物质,只要有适合的条件!可以从反映热力学来考察反映情况.简单点的话可以从沉淀溶解、氧化还原、酸碱解离和配合现象(个人更倾向把配合归为酸碱解离里)的角度分析.理论基础就是以上四种理论.
4、反应动力学是说反应速度的.是考察环境对反应速率影响的理论.
5、酸碱的说法比较多,但一般都使用路易斯酸碱质子理论说:能给出质子的为酸,能接收质子的为碱;同时,能接收电子的为酸,能给出电子的为碱.有个很经典的例子就是:像HF溶液中加入BF3,HF的酸性增强,是因为BF3是路易斯酸,有强的吸引HF中F的电子的能力,使得H-F键容易解离,从而酸性增强.虽然在BF3中没有看到传统意义上的酸的标志:H+,但它却是酸!而HF有传统意义上酸的标志,却在这里成为碱!
很高兴你能考虑这么多!欢迎追问~

亲合(四):

(2014•淄博三模)烟草(2n)的S基因位点上有三种基因(S1、S2、S3.),当花粉的S基因与母本的S基因相同时,花粉管的正常发育受阻而不能完成受精(花粉不亲合).若不同,则花粉可正常发育并与卵细胞结合,完成受精作用(花粉亲合).这种现象称为自交不亲合现象(如图所示).请分析回答:

(1)烟草自然种群中,共有______种基因型.
(2)基因型为S1S2(♀)和S2S3(♂)的烟草杂交,子一代中和母本基因型相同的个体占______.如果反交,子一代的基因型是否与正交相同______.
(3)二株烟草杂交后代(子一代)的基因型为S1S2和S1S3,则母本的基因型为______,父本的基因型为______.人工间行种植基因型为S1S2、S2S3烟草,子一代中的基因型及比例为______.
(4)若基因A、a位于2号染色体上,分别控制烟草的红花和黄花.为确定S基因是否也位于2号染色体上,现用两株基因型为AaS1S2(♀)、AaS2S3(♂)的红花烟草杂交,统计后代的花色及比例:若______,则S基因位于2号染色体上.若______,则S基因不位于2号染色体上.

(1)烟草存在自交不亲合现象,因此不存在纯合体,所以在烟草的自然种群中共有3种基因型,即S1S2、S1S3、S2S3
(2)基因型为S1S2(♀)和S2S3(♂)的烟草杂交,由于含有S2的花粉不亲和,因此子一代的基因型是S1S3和S2S3,其中没有和母本基因型相同的个体.如果反交,即S1S2(♂)×S2S3(♀),含有S2的花粉不亲和子一代的基因型是S1S2和S1S3,与正交结果不相同.
(3)二株烟草杂交后代(子一代)的基因型为S1S2和S1S3,由于子代的基因型中都有S1,所以在母本中不能出现S1,母本的基因型为S2S3,父本的基因型为S1S2或S1S3.人工间行种植基因型为S1S2、S2S3烟草,可能发生正反交,但是不会发生自交,根据第(2)题可知,子一代中的基因型及比例为S1S2:S1S3:S2S3=1:2:1.
(4)若基因A、a位于2号染色体上,分别控制烟草的红花和黄花.为确定S基因是否也位于2号染色体上,现用两株基因型为AaS1S2(♀)、AaS2S3(♂)的红花烟草杂交,统计后代的花色及比例.若S基因位于2号染色体上,且在雄性个体中,a基因和S2基因位于一条染色体上,则aS2的花粉不亲和,后代全为红花;若S基因位于2号染色体上,且在雄性个体中,A基因和S2基因位于一条染色体上,则AS2的花粉不亲和,后代红花:白花=1:1.若S基因不位于2号染色体上,则红花:黄花=3:1.
故答案为:
(1)3
(2)0     否
(3)S2S3   S1S2或S1S3  S1S2:S1S3:S2S3=1:2:1
(4)全为红花或红花:白花=1:1      红花:黄花=3:1

【亲合】

亲合(五):

什么是电子亲和性和电子的电负性?
我想知道: what is electron affinity and electronegativity.要简介明了.还有它们在化学表上的变化和原因~请分开讲. 谢谢

electron affinity:即电子亲和能或电子亲和势( Eea),定义为单位原子或分子获得一个电子,变成 -1 价离子时放出的能量.对元素来说,电子亲合能越大,夺取电子的能力(或称“非金属性”)越强.
electronegativity:即电负性,首先由莱纳斯·鲍林于1932年提出,它综合考虑了电离能和电子亲合能,以一组数值的相对大小表示元素原子在分子中对成键电子的吸引能力.元素电负性数值越大,原子在形成化学键时对成键电子的吸引力越强.
两者有关,但不能等同.电子亲和能是可以具体测量的,单位是KJ/mol,电子亲和能最大的元素是氯元素;电负性无单位,其数值除了考虑亲和能,还考虑了电离势,电负性最大的元素是氟元素.(当然,理论电负性最大的是氦元素)

亲合(六):

能向我讲解一下晶格能吗?

在标准状况下(101 325Pa和25℃),由相互远离的气态离子或分子形成1mol化合物晶体时所释放出的能量.
晶格能是衡量晶体中离子间或分子间结合能力大小的一个量度,是阐明晶体物理、化学性质的重要物理量.晶格能越大,晶体的熔、沸点越高,硬度也越大.分子晶体的晶格能以分子间作用力为基础,比离子晶体的晶格能小得多.
晶格能
也称点阵能,是指由相互远离的气态离子或分子形成1mol化合物晶体时所释放出的能量(更严谨的定义还须指定温度),因晶体具有点阵式的周期性结构,故得名.如对由正、负离子M+和X-组成的离子晶体,下式中的U即形成1mol离子化合物MX的点阵能:
M+(气态)+X-(气态)→MX(晶态)+U
点阵能是衡量晶体中离子间或分子间键结合能大小的一个量度,是阐明晶体物理、化学性质的重要物理量.分子晶体的点阵能因以分子间作用力为基础,比离子晶体的点阵能要小得多.
晶格能又叫点阵能.它是在OK时1mol离子化合物中的正、负离子从相互分离的气态结合成离子晶体时所放出的能量.用化学反应式表示时,相当于下面反应式的内能改变量.
aMz+(气)+bXz-(气)→MaXb(晶体)+U(晶格能)
晶格能也可以说是破坏1mol晶体,使它变成完全分离的自由离子所需要消耗的能量.晶格能越大,表示离子键越强,晶体越稳定.晶格能的数值有两个来源.第一是理论计算值.它是根据离子晶体模型,考虑其中任一离子跟周围异号离子间的吸引作用,以及跟其他同号离子间的排斥作用推导出下列近似公式计算得到的.

式中Z是离子价数,R0是一对离子间的平均距离,A是跟一定的晶格类型有关的常数,NA是阿佛加德罗常数,m是跟离子的电子层构型有关的常数,它的值可取5~12,ε0是真空电容率(8.85419×10-12库-2·牛-1·米-2).例如,氯化钠晶体的Z+=Z-=1,R0=2.814×10-10m,m=8,A=1.7476,代入上述公式可得U=755kJ/mol.第二是热化学实验值.设计一个热化学循环,然后根据实验测得的热化学量(如生成热、升华热、离解热、电离能、电子亲合势)进行计算.影响晶格能大小的因素主要是离子半径、离子电荷以及离子的电子层构型等.例如,随着卤离子半径增大,卤化物的晶格能降低;高价化合物的晶格能远大于低价离子化合物的晶格能,如UTiN>UMgO>UNaCl.此外,Cu+和Na+半径相近、离子电荷相同,但Cu+是18电子构型,对阴离子会产生极化作用,因此UCu2S>UNa2S.离子化合物都有较高的熔点和沸点,这是和它们离子晶体有很大的晶格能有关.由于UMgO>UNaF,MgO的熔点(2800℃)比NaF的熔点(988℃)高得多.晶格能的大小决定离子晶体的稳定性,用它可以解释和预言离子晶体的许多物理和化学性质.例如,根据晶格能大小可以求得难以从实验测出的电子亲和势,可以求得离子化合物的溶解热,并能预测溶解时的热效应.

亲合(七):

什么是电负性?亲和性又是什么?
It is still blur-blur,not clear enough to distinguish electronegativity from affinity.
More confused with electropositivity and affinity.
Thanks anyway.

电负性:electronegativity.
电负性(简写 EN),也译作负电性及阴电性,是综合考虑了电离能和电子亲合能,首先由莱纳斯·鲍林于1932年提出.它以一组数值的相对大小表示元素原子在分子中对成键电子的吸引能力,称为相对电负性,简称电负性.元素电负性数值越大,原子在形成化学键时对成键电子的吸引力越强.
同一周期从左至右,有效核电荷递增,原子半径递减,对电子的吸引能力渐强,因而电负性值递增;同族元素从上到下,随着原子半径的增大,元素电负性值递减.过渡元素的电负性值无明显规律.就总体而言,周期表右上方的典型非金属元素都有较大电负性数值,氟的电负性值数大(4.0);周期表左下方的金属元素电负性值都较小,铯和钫是电负性最小的元素(0.7).一般说来,非金属元素的电负性大于2.0,金属元素电负性小于2.0.
电负性概念还可以用来判断化合物中元素的正负化合价和化学键的类型.电负性值较大的元素在形成化合物时,由于对成键电子吸引较强,往往表现为负化合价;而电负性值较小者表现为正化合价.在形成共价键时,共用电子对偏移向电负性较强的原子而使键带有极性,电负性差越大,键的极性越强.当化学键两端元素的电负性相差很大时(例如大于1.7)所形成的键则以离子性为主.
元素的电负性愈大,吸引电子的倾向愈大,非金属性也愈强.电负性的定义和计算方法有多种,每一种方法的电负性数值都不同,比较有代表性的有3种:
① 莱纳斯·鲍林提出的标度.根据热化学数据和分子的键能,指定氟的电负性为3.98,计算其他元素的相对电负性.
②R.S.密立根从电离势和电子亲合能计算的绝对电负性.
③A.L.阿莱提出的建立在核和成键原子的电子静电作用基础上的电负性.利用电负性值时,必须是同一套数值进行比较.
常见元素电负性(鲍林标度)
氢 2.2 锂 0.98 铍 1.57 硼 2.04 碳 2.55 氮 3.04 氧 3.44 氟 3.98
钠 0.93 镁 1.31 铝 1.61 硅 1.90 磷 2.19 硫 2.58 氯 3.16
钾 0.82 钙 1.00 锰 1.55 铁 1.83 镍 1.91 铜 1.9 锌 1.65 镓 1.81 锗 2.01 砷 2.18 硒 2.48 溴 2.96
铷 0.82 锶 0.95 银 1.93 碘 2.66 钡 0.89 金 2.54 铅 2.33
亲和性, affinity
化学亲和性指的是使化学元素之间形成化合物所提供的力.
这有些英文接受,不知道你能否看得懂:
This section is from "The American Cyclopaedia", by George Ripley And Charles A. Dana. Also available from Amazon: The New American Cyclopædia. 16 volumes complete..
Chemical Affinity
Chemical Affinity, the name given to the force which combines together chemical elements so as to form compounds. Of its real nature or essence we are entirely ignorant, as we are of the essential nature of other material forces. The term chemical attraction has also been applied to this force, on the hypothesis that it draws together chemical atoms. In many cases there can be no doubt that the chemical particles come nearer together when they combine: thus if two volumes of hydrogen and one volume of oxygen be caused to unite, we do not get three volumes of steam, but only two; that is, the particles have ap-proached so much closer in combining as to occupy but two thirds of their former space. In other cases, however, compounds are found to occupy exactly the same space that their elements did before combination, and sometimes they fill even a greater space. Hence the term chemical attraction has been thought objectionable. Chemical affinity is that link or tie which binds together unlike kinds of matter, in such an intimate manner that the properties of the elements are lost, and a compound with new properties is produced. It is in this that it differs from cohesion, which only unites or aggregates similar particles without altering properties.
The particles in a piece of iron or sulphur are held in union by cohesion; but when sulphur and iron combine chemically, both elements disappear, lose their properties and identity, and a new compound is formed - the sulphuret of iron. Newness of properties in the compounds formed is the distinguishing peculiarity i of chemical affinity. It obliterates the characteristics of the elements, and generates new properties in the product. Cohesion is usually said to act between homogeneous particles, as in the cases just cited of sulphur and iron; but it may also act between dissimilar substances, as where silver is inlaid with steel, or copper metal united to tin, or iron coated with zinc, or wood joined to glue, or paper to paste, or pitch to the fingers. These, however, are mechanical combinations; there is no destruction of the properties of the combined substances, and those of the combination are not new, but are the same as the properties of the constituent substances, each of which retains its individuality. The force of gravitation is brought into play between masses of matter at all distances; chemical affinity acts only when the elements are in contact or at insensible distances.
For this reason affinity is most energetic when one or both of the elements are in a state of solution, the approach of the atoms being then most perfect. It was once thought that chemical affinity could not take effect without the intervention of solution; and although the statement is generally true, yet there are some substances whose affinities are so intense that they will unite even in the solid state when made to touch each other. The action of affinity is heightened, modified, and suspended by various other causes. Among these heat is most potent, and most easily available in the laboratory and chemical manufactory. Thus carbonic acid and lime unite strongly at common temperatures, forming marble or limestone, but at a red heat their affinity is annihi-lated and they separate. On the other hand, potash and sand will not actively combine at ordinary temperatures, while at a red or white heat, at which they are melted, combination takes place and glass is formed. Light also influences affinity, promoting combination and decomposition. If chlorine and hydrogen gases be mixed in the dark they will not unite, but exposed to light they combine at once; while in every green vegetable leaf carbonic acid is decomposed every day under the inthi-ence of solar light.
The recent investigations in photography have greatly multiplied the number of substances over which light is known to exert a chemical influence. Electricity also has a governing action over affinity. An electric spark, shot through a mixture of oxygen and hydrogen gases, causes them to combine instantaneously and explosively, producing water; while a steady electric stream sent through the water annuls the affinity of its elements and sets them free again. Other causes also, known and unknown, affect in various ways and degrees the play of affinity; indeed, a full statement of them would involve almost the whole science of chemistry. - The changes in the properties of substances produced by affinity are numberless and surprising. When solid charcoal and sulphur combine, the compound formed is colorless as water, and highly volatile. If yellow sulphur and bluish white quicksilver be heated together, they form the bright red vermilion. Waxy phosphorus and colorless invisible oxygen unite to form a white body resembling snow. Nitrogen and oxygen are tasteless, separate or mixed; yet one of their compounds, laughing gas, is sweet, and another, nitric acid, intensely sour; they are both transparent and invisible, yet they form a cherry-red compound gas.
Charcoal and hydrogen are odorless; nevertheless, many of our choicest perfumes, such as oils of roses and bergamot, as well as the less agreeable spirits of turpentine and illuminating gas, contain only these elements. The mild and scentless nitrogen and hydrogen give rise to one of the most odorous and pungent compounds, ammonia; while suffocating and poisonous chlorine, united to a bright metal, sodium, yields common salt. Charcoal, hydrogen, and nitrogen, which singly or mixed are not injurious to life, yet combine to form the terrible poison prussic acid; while charcoal, hydrogen, and oxygen, variously united, produce sweet sugar, poisonous oxalic acid, and intoxicating alcohol.- The strength of affinity among different elements is various. Thus the chemical energies of sulphuric acid are superior to those of carbonic acid; if the former be united to carbonate of lime, it takes the lime away from the carbonic acid - that is, produces decomposition and a new compound. It has been attempted to establish a scale of affinities among various chemical substances to form the basis of an order of decomposition; but affinity is disturbed and overcome by so many circumstances that such tables are of but little value.
For the laws of affinity or chemical combination, see Atomic Theory.
=========
In chemical physics and physical chemistry, chemical affinity can be defined as electronic properties by which dissimilar chemical species are capable of forming chemical compounds.[1] Chemical affinity can also refer to the tendency of an atom or compound to combine by chemical reaction with atoms or compounds of unlike composition.
According to chemistry historian Henry Leicester, the influential 1923 textbook Thermodynamics and the Free Energy of Chemical Reactions by Gilbert N. Lewis and Merle Randall led to the replacement of the term “affinity” by the term “free energy” in much of the English-speaking world.
[edit] Modern conceptions
In modern terms, we relate affinity to the phenomenon whereby certain atoms or molecules have the tendency to aggregate or bond. For example, in the 1919 book Chemistry of Human Life physician George W. Carey states: “Health depends on a proper amount of iron phosphate Fe3(PO4)2 in the blood, for the molecules of this salt have chemical affinity for oxygen and carry it to all parts of the organism.” In this antiquated context, chemical affinity is sometimes found synonymous with the term "magnetic attraction". Many writings, up until about 1925, also refer to a “law of chemical affinity”.

亲合(八):

如图是细胞融合示意图,请据图回答:

(1)①过程①②应使用______处理细胞,以去除植物细胞壁.
(2)如果将已去除细胞壁的植物细胞放入等渗溶液中,细胞呈现什么形状?______.
(3)过程③叫做______技术,该过程的诱导方法有物理法和化学法两大类.
(4)过程④是细胞壁的再生过程,与此过程密切相关的细胞器是______.
(5)⑤过程中进行的细胞分裂方式是______,该过程先诱导细胞分裂形成______,再由它分化形成杂种植物幼苗.
(6)若番茄细胞内含A个染色体,马铃薯细胞内含B个染色体,则番茄-马铃薯细胞内含______个染色体;若对番茄和马铃薯采用杂交育种方法能成功的话,得到的后代应含______个染色体.若要得到可育的番茄-马铃薯,必须用______来处理幼苗.这两种方法相比,体细胞杂交方法的优点是______.

【亲合】

(1)过程①②表示利用酶解法去除植物细胞的细胞壁,细胞壁的成分为纤维素和果胶,因此根据酶的专一性,应使用纤维素酶和果胶酶.
(2)过程③叫做原生质体融合,诱导植物细胞原生质体融合的方法有物理法(离心、震动、电刺激)和化学法(PEG)两大类.
(3)过程④是再生细胞壁,而高尔基体与细胞壁的形成有关.
(4)⑤过程为植物的组织培养,细胞分裂方式为有丝分裂.重组细胞首先经过脱分化形成愈伤组织,然后经过再分化过程形成完整植株.
(5)通过原生质体融合,“番茄-马铃薯”细胞集合了两种细胞中的染色体,因此染色体数为A+B.若采用杂交育种,番茄产生的配子中染色体数为

A
2
,马铃薯产生的配子中染色体数为
B
2
,因此如果成功得到后代,则后代染色体数为
A+B
2
;但是该个体中不存在同源染色体,因此高度不育,可用秋水仙素处理幼苗,使染色体数目加倍为(A+B)后,就可以得到可育的番茄-马铃薯.
(6)体细胞杂交方法的优点是能够克服远缘杂交不亲合的障碍.
故答案为:
(1)纤维素酶和果胶酶  
(2)呈圆球形[失去细胞壁的保护,在等渗液中由于其细胞表面张力的作用形成]
(3)原生质体融合    
(4)高尔基体  
(5)有丝分裂  愈伤组织  
(6)A+B  
A+B
2
   秋水仙素  
克服远缘杂交不亲合的障碍,在培育作物新品种方面有重大突破

亲合(九):

什么叫组织特异性.
中间丝组织特异性解释?
不要百度

组织特异性 tissue specificity 组织特异性就是多细胞生物个体,每个组织具有与其它组织相区别的特征.将同样的性质以脏器单位来考虑时,称为脏器特异性.组织特异性的存在是取决于构成该组织主要成分的细胞性质.例如自身免疫性疾病,体内某组织发生障碍就是组织特异性表现的结果,在这种情况下,是构成该组织主要成分的细胞的抗原(组织特异性抗原)与其相对的抗体发生了反应.基于动物形态形成上的组织亲合性的差异,把两种不同组织分离所得的细胞进行混合,则将在两者之间发生选别,这都证明组织特异性的存在.

亲合(十):

生物填空(基因工程)
用基因工程改良动植物品种最突出的优点是:能打破常规育种难以突破的————

物种之间的界限

本文来源:https://www.ahstyy.net/jz/153595.html

扩展阅读文章

推荐内容

正能量句子网 https://www.ahstyy.net

Copyright © 2002-2018 . 正能量句子网 版权所有 京ICP备11356960号

Top